skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Benedetti, Giacomo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The integrity of software builds is fundamental to the security of the software supply chain. While Thompson first raised the potential for attacks on build infrastructure in 1984, limited attention has been given to build integrity in the past 40 years, enabling recent attacks on SolarWinds, event-stream, and xz. The best-known defense against build system attacks is creating reproducible builds; however, achieving them can be complex for both technical and social reasons and thus is often viewed as impractical to obtain. In this paper, we analyze reproducibility of builds in a novel context: reusable components distributed as packages in six popular software ecosystems (npm, Maven, PyPI, Go, RubyGems, and Cargo). Our quantitative study on a representative sample of 4000 packages in each ecosystem raises concerns: Rates of reproducible builds vary widely between ecosystems, with some ecosystems having all packages reproducible whereas others have reproducibility issues in nearly every package. However, upon deeper investigation, we identified that with relatively straightforward infrastructure configuration and patching of build tools, we can achieve very high rates of reproducible builds in all studied ecosystems. We conclude that if the ecosystems adopt our suggestions, the build process of published packages can be independently confirmed for nearly all packages without individual developer actions, and doing so will prevent significant future software supply chain attacks. 
    more » « less
    Free, publicly-accessible full text available April 26, 2026
  2. Reusable software libraries, frameworks, and components, such as those provided by open source ecosystems and third-party suppliers, accelerate digital innovation. However, recent years have shown almost exponential growth in attackers leveraging these software artifacts to launch software supply chain attacks. Past well-known software supply chain attacks include the SolarWinds, log4j, and xz utils incidents. Supply chain attacks are considered to have three major attack vectors: through vulnerabilities and malware accidentally or intentionally injected into open source and third-partydependencies/components/containers; by infiltrating thebuild infrastructureduring the build and deployment processes; and through targeted techniques aimed at thehumansinvolved in software development, such as through social engineering. Plummeting trust in the software supply chain could decelerate digital innovation if the software industry reduces its use of open source and third-party artifacts to reduce risks. This article contains perspectives and knowledge obtained from intentional outreach with practitioners to understand their practical challenges and from extensive research efforts. We then provide an overview of current research efforts to secure the software supply chain. Finally, we propose a future research agenda to close software supply chain attack vectors and support the software industry. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026